Copy of `Isotopes - Science Glossary`
The wordlist doesn't exist anymore, or, the website doesn't exist anymore. On this page you can find a copy of the original information. The information may have been taken offline because it is outdated.
|
|
Isotopes - Science Glossary
Category: Sciences > Glossary of Nuclear Science Terms
Date & country: 04/09/2008, USA Words: 49
|
Q-valueThe energy available for decay. This energy is released by the nucleus mainly as gammas, betas, neutrinos, and/or alpha particles.
E=mc2Where: e is energy, m is mass, and c is the speed of light. Einstein's famous equation describes how energy and mass are related. In our animated decays, mass is lost. That mass is converted into energy in the form of electromagnetic waves. Because the speed of light is so great, a little matter can transform into large amount of energy.
SpinUsed to describe the angular momentum of the nucleus.
Spontaneous FissionNuclear decay by splitting the nucleus into two parts (fission fragments), neutrons, and gamma rays.
Semiconductor DetectorRadiation striking very pure Ge and Si semiconductor detectors can excite a large number of electrons into the conduction band leading to a measurable current. This current is proportional to the energy of the radiation. Semiconductor detectors can be used to accurately measure the energy and intensity of radiation.
Scintillation CounterA scintillation counter consists of a material that emits light when radiation passes through it. Various liquid, plastic, and crystalline materials have scintillation properties. Scintillation light is measured with photomultiplier tubes. In general the amount of scintillator light detected is proportional to the energy of the radiation.
Proton Separation EnergyThe energy required to remove a proton from a nucleus.
Proton DecayNuclear decay by emission of a proton.
ProtonOne of the basic particles which makes up an atom. The proton is found in the nucleus and has a positive electrical charge equivalent to the negative charge of an electron and a mass similar to that of a neutron. A proton is a hydrogen nucleus. In our diagrams, a proton is represented by this:
Proton-Proton ChainIn the Sun and other less massive stars, this chain is the primary source of heat and radiation. The proton-proton chain converts hydrogen into helium releasing energy in the form of particles and gamma-rays. Hydrogen is converted into helium in a chain of reactions. The first reaction takes an average of 1 billion years to occur while the others are much shorter. One step is only 1 second long. I...
Positron AnnihilationPositron decay in matter by annihilation with an electron. Usually and 'atom' of positronium (e+e-) forms which annihilates to produce two 511-keV photons. Occasionally, the positron will annihilate in flight to produce on or more photons sharing the total rest mass and kinetic energy of the positron and electron.
ParityA nucleus or particle has odd (-) or even (+) parity according to whether or not its wave function changes sign when all of the space coordinates are changed.
Photoelectric effectCollision process between an x-ray or gamma rays and a bound atomic electron where the photon disappears, the bound electron is ejected, and the incident energy is shared between the ejected electron and the remaining atom. The photon energy must be greater than the atomic binding energy. The probability for the photoelectric effect is approximately proportional to Z5 of the absorber and falls of ...
Pair ProductionA collision process for gamma rays with energies greater than 1022-keV (two electron masses) where an electron /positron pair is produced. A heavy nucleus must be present for pair production. For high-energy gamma rays the pair production process is proportional to Z2 and ln(gamma).
NucleusThe core of the atom, where most of its mass and all of its positive charge is concentrated. Except for hydrogen, it consists of proton and neutrons.
NucleonA proton or neutron.
Nuclear ReactionReaction between an energetic incident projectile (neutron, proton, or nucleus ) from a reactor or particle accelerator and a target nucleus producing product nuclides, gamma rays, particles, and other radiations.
NSRThe Nuclear Science Reference file is a compilation of about 160,000 references relevant to nuclear structure and decay.
Neutron Separation EnergyThe energy required to remove a neutron from a nucleus.
Neutron DecayNuclear decay by emission of a neutron.
Neutron-Induced FissionBombardment with a neutron resulting in splitting the nucleus into two parts (fission fragments), neutrons, and gamma rays.
NeutronOne of the basic particles which make up an atom. A neutron and a proton have about the same weight, but the neutron has no electrical charge. In our diagrams, a neutron is represented by this:
Natural AbundancePercentage of an element occurring on earth in a particular stable isotopic form.
Mass NumberThe sum of the number of neutrons and protons in a nucleus.
IsotopesTwo or more nuclides having the same atomic number, thus constituting the same element, but differing in the mass number. Isotopes of a given element have the same number of nuclear protons but differing numbers of neutrons. Naturally occurring chemical elements are usually mixtures of isotopes so that observed (non-integer) atomic weights are average values for the mixture.
IsobarsNuclides of the same atomic mass but different atomic number.
IsomersA long-lived excited state of the nucleus. Arbitrarily defined in as the Table of Isotopes as having a half-life greater than 1 ms.
Intensity BranchingThe intensity of a radiation emitted during radioactive decay.
Hydrogen BurningHydrogen burning is the fusion of four hydrogen nuclei (protons) into a single helium nucleus (two protons and neutrons.) The process is a series of reactions. The type of reactions depend on the mass of a star and its core temperature and density. In our Sun, the process is a proton-proton chain. In more massive stars, the C-N-O cycle (Carbon-Nitrogen-Oxygen) serves to fuse hydrogen into helium.
Half-LifeUsed to measure the rate of radioactive decay of disintegration. The time lapse during which a radioactive mass loses one half of its radioactivity.
Ground StateA lowest energy state of the nucleus.
Geiger CounterA radiation detector consisting of two electrodes with a low-pressure gas in between. A voltage is maintains such that if radiation passing through the counter ionizes the gas, an avalanche of electrons will occur. Geiger counters can count radiation but cannot distinguish either the energy or kind of radiation.
Gamma RaysA highly penetrating type of nuclear radiation, similar to x-rays and light, except that it comes from within the nucleus of an atom, and, in general, has a shorter wavelength. Gamma rays emission is a decay mode by which excited state of a nucleus de-excite to lower (more stable) state in the same nucleus. In our diagrams, a gamma ray is represented by this:
ENSDFThe Evaluated Nuclear Structure Data File is evaluated by an international collaboration of nuclear scientists. ENSDF is a database of nuclear structure and decay data.
Energy ScaleThe energy scale used by most nuclear scientists is electron volts (eV), thousands of electron volts (keV), and millions of electron volts (MeV). An electron volt is the energy acquired when an electron falls through a potential difference of 1 volt. 1 eV=1.602*1012ergs. Masses are also given by their 'mass-equivalent' energy (E=mc2). The mass of the proton is 938.27231 MeV.
Electron Capture DecayNuclear decay by capture of an atomic electron. If the decay energy is greater than 1022 keV, positron emission can also occur in competition with electron capture.
ElectronAn elementary particle with a unit electrical charge and a mass 1/1837 of the proton. Electrons surround the atom's positively charged nucleus and determine the atom's chemical properties. In our diagrams, an electron is represented by this:
Electromagnetic radiationRadiation consisting of electric and magnetic waves that travel at the speed of light. Examples: light, radio waves, gamma rays, x-rays.
Decay SchemeA drawing depicting the decay of a parent nucleus to a daughter nucleus. The betas or alphas are shown as arrows from the parent level to daughter level(s). Gamma rays de-exciting daughter levels are shown on the decay scheme.
Decay ModeDisappearance of a radioactive substance due to nuclear emission of an alpha or beta particle, capture of an atomic electron, neutrinos, spontaneous fission, and the emission of bremsstrahlung, x-rays, and conversion electrons. In rare instances proton, neutron, or light element (for example 14C) emission can occur. When a large amount of decay energy is available, beta-delayed emission of neutron...
Decay Branching %The nuclide decay rate by a particular decay mode. Some nuclides decay by only one mode (100%), and others by more than one mode. For example, 187Pb decay by beta decay (98%) and alpha decay (2%).
Conversion ElectronAn alternate process to x-ray emission during the de-excitation of an excited atom.
Compton ScatteringCollision process between a gamma ray and a bound atomic electron where only part of the gamma-ray energy is transferred to the electron. The probability for Compton scattering is approximately proportional to Z, and for energies greater than 500 keV approximately proportional to 1/Egamma
Carbon-Nitrogen-Oxygen CycleIn stars more massive than the sun (>1.1 Solar masses), this cycle is the primary process which converts hydrogen into helium. 12C serves as a catalyst, an ingredient which is necessary for the reaction but is not consumed.
BremsstrahlungX-rays produced when fast electrons pass through matter. The bremsstrahlung (German for 'slowing-down radiation') energy varies from 0 to the energy of the electron.
Atomic NumberThe number of protons in the nucleus
Beta DecayNuclear decay by emission of an electron or a positron. Positron decay is always accompanied by electron capture decay.
Atomic MassThe mass of a neutral atom of a nuclide. The atomic weight of an atom is the weight of the atom based on a scale where 12C = 12. The atomic weight of an element is the weighted average of each isotope.
Alpha DecayNuclear decay by emission of an alpha particle (4He nucleus ).